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String model in D = 1 + 3 dimensions: the non-standard 
approach to Hamiltonian dynamics and quantization 
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Department of Theoretical Physics, Pedagogical Institute, 445859 Togliatti, Russia 

Received 5 July 1993, in final form 15 November 1993 

Abstract. The open spinning string is investigated in Minkowski space EU . By means 
of a reduction to the Wess-Zumina-Witten-Novikov (WWN) model a new Hamiltonian 
formalism is constructed. The Poisson bracket structure of the theory is given in terms of 
the algebra [(sl(Z, C)@[r-', f])@CJ@P, where Pis the Poimar6 algebra. The covariant 
quantization is fulfilled in D= I + 3 dimensions with help of 'bosonization' methods. The 
resulting theory is a combination of the theory of a free fermionic field in two dimensions 
and the theory of a free particle in Minkowski space. Non-triviality is conditioned by the 
presence o f a  finite number of constraints. The formula for the mass spectrum is discussed. 

1. Introduction 

The classical dynamics of the string as a curve in D-dimensional spacetime was investiga- 
ted many years ago in various aspects. Because of the natural geometrical interpretation 
of the string action S the Lagrangian formalism in unambiguous here. The situation 
with the Hamiltonian theory is more complicated. Indeed, it is known that standard 
Hamiltonian variables (p  = 0, 1, . . . , D - 1) 

~ 

where (to, 5 ' )  is some parametrization of the string world sheet {X,( to, cl)), allows 
construction of the covariant quantum theory only for D=26 (D= IO) (Scherk 1975, 
Green et ~11987). Because of the obvious contradiction with the contemporary experi- 
mental data on the spacetime properties the following alternative theoretical develop- 
ments exist. First, the superfluous dimensions must be compacted into a Planck-size 
manifold in some way. The second opportunity which is the starting point of our 
investigation is connected with the following theoretical statement (Dirac 1950, Berezin 
1975): any fixed classical dynamical system can possess various Hamiltonian structures 
which are different and non-equivalent to the standard one (1). The classical system 
can be fixed by means of equations of motion, for example. In accordance with the 
works of Dirac (1950) and Berezin (1975), each of these (non-standard) Hamiltonian 
structures can be considered as the primary point of the corresponding classical theory 
and be subjected to the quantization procedure. Of course, the results are different for 
the various Hamiltonian variables, but the experiment is the only criterion here! We 
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state that the Poincark algebra P must be correct after quantization in D= 1 + 3 dimen- 
sions. This demand is a 'selection rule' for the possible canonical Hamiltonian variables. 
Indeed, different choices lead to different formulae for the generators P' and M"' of 
the spacetime transformations. In general, we have various anomalous terms in the 
quantum algebra P. However, because of the wide choice of variables there is no reason 
to always expect the presence of thesetenns. (It should be mentioned that we consider 
only the anomaly in PoincarC commutators.) 

Various approaches exist in connection with quantum string theory in Minkowski 
space (Rohrlich 1976, Polyakov 1981, Pron'ko 1985, Lunev 1990). One of the possible 
models which conserves the covariancy in four dimensions is assumed in this paper. 
Some previous investigations have been made (Talalov, 1990a, b), and we want to use 
some of those results. The object of our studies is the open string A'" =P( 5') where 
~ ' E [ O ,  z] and the Majorana spinor field Y:'=Y:( { I ) ,  which is the spinor-valued funo 
tiou defined on the world sheet. The index A is a four-dimensional spinor index'in the 
space and the index i is a two-dimensional spinor index in the corresponding tangent 
plane. Note that components Yf are complex (non-Grassmann!) numbers. The Eo 
dynamics is defined by means of relativistic invariant action, 

n 

where the two-dimensional y-matrices yo= cI, y' =ioz and a,= a/&?. It is well known 
that the action (2) can be deduced consistently from the action for superstring theory 
(Green et al 1987) by fixing its initial symmetries. For example, the full reparametriza- 
tion invariance was broken by the choice of orthonormal parametrization of the string 
world sheet, so that 

(a, =o (3) 

where 8, a/a[, and {*-{' * are the cone parameters. Of course, the conditions 
(3) are fulfilled in our work. 

However, some starting positions of our model are quite different from ones for the 
superstring theory. The ordinary supersymmetry transformations which connect the 
variables X ,  and Yo will not be considered in the suggested approach. These variables 
become complicated functionals on fundamental Hamiltonian variables which will be 
introduced below. A priori, the only demand here is the relativistic invariance. 

In accordance with the above discussions, the following will be emphasized here. 
The action (2)  serves two aims only. First, we want to have the equations of motion 

a- a+x, = o &Y*=O (4) 

where 'f'+=Yl, Y-=Y2, with the corresponding boundary conditions 

and second we want to have the explicit formulae for the Noether invariants P" and 
M"". The functions (1) and Yi,Y2 are not canonical Hamiltonian variables in our 
model. The Poisson brackets for these functions are complicated. 
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2. Gauge fixing and reduction to the WZWN model 

As is~well known (Green el a1 1987), the light-cone gauge is one of the necessary 
conditions which must be imposed for the passage to action (2) from the Green- 
Schwarz action. In accordance with the above discussion we start from the action (2). 
That is why we must choose some gauge which is additional for the dynamical equations 
in our model. Our conditions are’as~follows: 

‘y,rv+a*x,+ rf .  (6) 

We have some natural generalization of the light-cone gauge. Indeed, the functions 
Y,=const are the particular solutions of the dynamical equations for the spinors 
Y+( 5). In this case the vector n’ =‘?JP’f’+ is the constant light-like vector and condi- 
tions (6) are reduced to the form 

a,X,,n’ #O. 17) 
It is known that the standard tight-cone gauge can be imposed iff the inequality (7) 
occurs for n,=(1,0,0,  1). 

Because of the close connection with string theory, two-dimensional conformal 
models are subject to intensive study (e.g. see Belavin e f  nZ1984, Alvarez-Ganme et nf 
1987, Sedrakyan and Stora 1987). Our approach is based on the following construction. 
Let us consider the system of tensors (Y”,  G””), where Y”=’?r%”p and G””= 
(i/2)’?(rT”- T”’)Y. As is well known, the following one-to-one correspondence 
exists (Penrose and Rindler 1984): Y e (  Y’, G”“). Next, we construct the pair of bases 
e,+ and e,- which are defined at each point of the string world sheet: 

(eot)’= Y2 &8*X” 

(el.)’= r2P+“a,xV 

(e& = i Y f :  - 8,X’ 

(e2)P = pQ ( ~ & o ) A  (el)+-. 
Because of conditions (3) and (6)  and the properties of tensors Y, and Gpv (Zhelnoro- 
vich 1979), these bases are orthonormal. Let us define the pair of vector matrices 

3 

i- I 
E+=eol- ei+cTi 

and introduce the matrix K=K( Eo, 6 ’ )  which transforms from E+ to E-: 

E- =KE+Kt. (8) 
As a consequence of the equations of motions for the variables X, and Y+, we have 

a*Er=O. 

Therefore, the following equation for the SL(2, C)-valued field K=K( go, 5’) i s  
obtained : 

a-(kla+lu) =o. (9) 
This is a special case of the general equation for the WZWN model 

d ( K - l a + K )  + ba+(K1 a-K) = 0. 

Define now the left and right currents: 

Q- = - (a-K)K-l Q+=K’(d+K). (10) 
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The following statement is true: zhe periodicul functions 

if <E[O, x ]  e( 5 )  ={e_' 
alQ-(-<)a~ if<d--,OI 

can be constructed correcfIy with the hek of the boundary conditions ( 5 ) .  
The proof is quite simple if we rewrite the boundary conditions (5) in the form 

E - l < 1 = 0 , a = ~ i  E+ I < ' - o . n ~ 1 .  (11) 

Because of equalities (1 1) which take place for every CO,  matrices E* can be continued 
periodically. As a consequence, the periodical sl(2, C)-valued function Q( 5 )  may be 
constructed. 

Let us consider the auxiliary linear system 

T'( 5 )  + e( < = 0. ' (12) 
As a consequence of formulae (8)-(lo), the vector matrices E* are reconstructed explic- 
itly through the matrix T( <)-the matrix of solutions of the system (1 1): 

where the vector matrix Eo is some constant basic matrix. It is clear that the original 
string variables a*& and Y* can be reconstructed through the elements of the matrices 
E*. 

3. Poisson bracket structure and world sbeet geometry 

Let us define the current jn( <) by means of the decomposition 

The general Hamiltonian structure of the two-dimensional chiral field theories (Takh- 
tadjan and Faddeev 1986) allow us to write the following Poisson brackets for the 
variables j,( 5): 

{ jd  5),jb(o))o= -2&b6'( 4- o) - - 2 ~ . d c ( 5 ) 6 (  5- r7)  (14) 
where 6(x)=Z,e". As a consequence of the boundary conditions (1 I)  and formulae 
(13), we have to impose~the following 'constraints' on the Hamiltonian variables jo: 

M(ja)=l (15) 
where M = M (j,) is the monodromy matrix of the system (12). The remarkable fact is 
that the matrix M annuls all brackets on the surface of the constraints (15) because 

{Q(5)@, MJo=[l@M, C(5)I (16) 
for some 4 x 4 matrix C, which is defined from the concrete representation for M. The 
proof and a discussion can be found in Talalov 1990a, b). 

The relevance of the brackets (14) in our model is confirmed by means of the 
following geometrical arguments. Let us fulfil the Gauss decomposition for the 
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matrix K'(  eo, 5'): 

Next, we introduce the pair of functions p,=(a,a,) e-$. By analogy to the work of 
Talalov (1989), where the case D =  1 +2  dimensions was investigated, the following 
statement can be proved: thefirst ( I )  andsecond (U,, 112) quadratic forms of the string 
world sheet are written by means of the formulae 

I= -Le-Re 2 0 de+ de- 

III - iI12 = e i(l"'+D)[p+ dg:+p-dc?]. 

In  accordance with the definitions (10) and (17) the components of current jn( 5 )  are 
thelocalfunctionalsfrom thevariables $ ( e ) ,  x ( e ) = # ( g ) ,  p+(c), a,(t).Thefollow- 
ing fact can be stated directly: the brackets (14) are the consequence of the fundamental 
brackets for uariables 4, n, a, ,  p,: 

{ a ( 5 ) ,  4(v)}0=46(E-tl) {P*(C)> a*(v)lo= W 5 - v )  (18) 
(other brackets Danish). As is well known, the Gauss decomposition (17) may be fulfilled 
everywhere except at some points on the (go ,  5') plane where the following equality is 
true: 

This means that we must consider the singular functions 4, a ,  too. From the geometri- 
cal viewpoint this situation corresponds to the strings which are cuspidal curves. This 
case is of course interesting. Because of the presence of singularities, definitions of the 
'small' variations 64, 6ai are ambiguous. That is why we cannot use the functions 4, 
R, a,, p, for parametrization of the phase space in our model. To avoid a lot of 
problems we must deal with the (regular) current j,( 5)  and the brackets (14). 

In accordance with the rule of reconstruction of the variables a,Xp( e", e') and 
Y*( e,), the set {jb( g)} is insufficient. Indeed, this set must be completed by the h i t e  
number of constants {A , } .  These constants must 6x the marrix T( t), because T( 5) 
can be subjected to the following transformations: 

(19) 
where the constant matrix B E G L ( ~ ,  C). Moreover, four constants Z p  are needed for 
the reconstruction of variables Xp from the derivatives a,X". The quantities 2" and 
A, are additional independent Hamiltonian variables. The set ( A }  can be chosen in 
various ways, for example 

T( e)+P( 5 )  = T( 5 ) B  

T(x) dx=A. (20) or jozn T(O)=A 

As follows from formula (13), the transformations (19) are the Lorentz transformations 
and dilatations of the initial Minkowski space El.3. That is why the variables {Au}  are 
not relativistic invariant, unlike the current jo( e ) ,  which is invariant. Obviously, the 
constants Z" are changed by Poincark translations. In accordance with the above discus- 
sion the Poisson brackets (14) must be completed by some brackets {Ag,&,,,), 
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{ Z ,  , Z"}, . . . . Thus, the Poisson brackets of the two arbitrary functionals G, F i n  our 
theory must be defined, in general, by the formula 

where the brackets { jm,  j b } o  have been defined by formula (14) and hjkr,  S$ are some 
appropriate constants. Thus we have the number of symplectic structures which differ 
from each other by some 'boundary' terms. This situation is well known from the 
Hamiltonian theory of the inverse scattering transform for some nonlinear equations 
(e.g. see Arkad'ev et a1 1988). We have to emphasize the following point here. The 
various definitions (20) lead to the non-equivalent Poisson bracket structure, in general. 
We must choose those variables which conserve the relativistic covariancy of our theory 
after quantization. 

Let us consider the energy momentum P,, and the angular momenta MPv, which 
are functionals of the variables X, and Y* in accordance with the Noether theorem. 
Then for the matrices 

P=o,P" & = o , @ o v M ~ "  .2= u,Z, 

where U' = 1, we have (Talalov 1990a, b) 
2.7 

F=$jo Tt(x) ( l+03)T(x)dx  

fi=.2@F-F@.2 

+ jo2z (~(X)@.T~(U))W(X-Y)(T(X)@T(Y))  h d y  

where W(x) is some matrix-value distribution. 
The idea is that we can fix the matrix solution T ( 5 )  and integration constants 2, 

by fixing the variables P and M,, . indeed, let P,, and M,," be arbitrary constant tensors 5 with the properties (P,) > 0 and MPv= - M ,  . Let and M,),,, be invariants which 
are calculated in accordance with formulae (21) for Z=O and T(x)  = To(x) where To(x) 
is the matrix solution of the system (12)  which is fixed by the condition 

To(x)Ix-o=l.  
Then for every fixed current ja the wnstants P,, M,," correspond to the unique matrix 
solution T ( S )  of the system (12) and the unique set of integration constants {Z,} if 
the following additional condition is fulfilled (Talalov, 190% b): 

(P,P?2(S(o,"Sib,) = (sPsw~o~rP~rJ~)z (22) 
where the Luban'ski-Pauli vector S, = - ( I / ~ ) q , , b W A P u  is introduced and 
the vector S(O), must be written through the quantities P(o,p and M(o)pv, correspond- 
ingly. The quantities with the index (0) are the single-valued functionals from the 
currents j , .  Note that the different powers of the multipliers in equation (22) are condi- 
tioned by the different properties of the vectors P(o)p, S,), under the dilatations. Because 
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of condition (22), two pairs of orthogonal vectors (P,,, S,,) and, ( P ( o , ~ ,  S ( O , ~ ) ~  can be 
transformed into each other by the Lorentz transformation and dilatation (19). 

Thus the independent Hamiltonian variables which must complete the set {jn( 5 ) )  
are the energy momentum P,, and the boosts and angular momenta M p v .  We postulate 
the following Poisson bracket structure for our theory: 

where F=F(j,(S); P,,, Mu") and G=G(. . .) are some functionals. Obviously, these 
brackets are antisymmetrical. The Jackobi identity is the next important demand here. 
It may be verified directly for the functionals F, . . . , such that the variational derivatives 
SF\6ja( e), . . . , are 2s-periodical functions. It must be emphasized that this condition 
is trivial on the surface of constraints (15) only. Thus the brackets of the variables P,, 
and M,," are 

{P*, Pp}=O {Map,  Py}=gpyPm-g&'p 

{Mcp,  M y S }  =gmSMPy +gPyMoS - g a y M P S  -gpSM@y 
{.in, P . } = { j . , ~ , p } = O .  

(23) 

Because the variables P,, and M,," are independent Hamiltonian variables, the anomal- 
ous terms do not appear in formulae (23) after quantization. The correspondence 

(x, , Y*) ++ (j.( 5 )  ; p,, I M P " )  

takes place on the surface of constraints (15) and (22). In accordance with (16) these 
constraints are the first type constraints in Dirac terminology. 

The Hamiltonian 

H0=i Io2= C ji( 5 ) d5 (24) 

leads to the following Eo dynamics: 

{Ho, & X , } = @ X ,  

{&, Y*}=&Y*. 
(25)  

The brackets of Ho with constraints (15) and (22) vanish on the constraint surface. The 
pair of independent canonical variables p ,  q, where { p ,  q} = 1, must be added for the 
correct integration of equation (25). Indeed, the Hamiltonian 

H=Ho+p 

leads to the relation 

{H,X,J=&X,, 

X,,( to, 5') = Z, t P,( 4' + q) + . . .2r-periodical terms. 
for 
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In the last formula {Ha, Zp}=O because Z,,=Z,(P, M ;  P(o), M(o)) in accordance with 
the above discussion. We wiU not take into account the variables p ,  q in this article. 
The constraintsp= 0, q =  0 are solved trivially with the help of the corresponding Dirac 
brackets construction. 

The field K( pa, 5 ' )  will be reduced to the SU(2)-valued field in the next section. 
That is why the currentj,(g) is real and the brackets {io,$} are not needed by us. 

4. Conformal properties and reduction to the real currents 

Let us rewrite equation (9) in terms of the (complex) functions Q( to, c'), a+( eo, c'), 
which are introduced by means of decomposition (17), and functions pi( eo, 5')  which 
are introduced above. The direct calculations gives the following result: 

-;a+a-Q+p+p- exp $=o 

aipr = o (26) 

a+a, -pt exp Q =O. 

This system was considered in the work of Pogrebkov and Talalov (1987) for the real 
functions Q, a,, pa>O as the field model in two-dimensional spacetime. This model is 
the product of the well-known Thirring and Liouville models if the two-dimensional 
spinor field with components O+ =& exp( *4ia*) are defined. 

The wide group of conformal symmetry of the system (26) was also investigated in 
the paper by Pogrebkov and Talalov (1987). In our (complex) case the conformal 
properties are similar. Indeed, consider the functions f&,  g* and A, where ALA; #O 
are arbitrary differentiable functions. Then the transformation 

(+, P+, a*)-+(& p i ,  6,) 

&e+, E - ) =  Q(A+(5+)>  A-(5-))+f+(5+)+f-(5-) 
P A C + ) =  p(AdS*))A:( ti) e x p ( - f X W  

a d { + ,  e-)=@+(A+(I+), A 4 4 - N  exp( f+(Id)+g+(@*)  

(27) 

where 

gives other solutions of the system (26). The generalization of the well-known conformal 
invariance of the Liouville equation a+a-q+exp q=O is obtained. Note that the 
functions p+ are dynamical variables in our model and cannot be exempted from our 
consideration. From the geometrical viewpoint, the following complex differential form 
on the string world sheet is invariant under the transformation (27): 

det(l12- iU,) 
det I 

dC= dS=2p+p- e4dd5+ d<- 

where dS=-ds+ dc- is theelement of area of the string world sheet. 
Let us prove the following statement: for every solution {Q, a,, pi) of the system 

(26) the functions g, and the realfunctions f, can be chosen in formulae (27) so that 
V(tO. <'I 

K((P, 5 ' ) E S W .  (29) 
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Indeed, according to the definition of the functions 4, a ,  the transformations (27) 
transforms the matrix K( to, 5’) in the folowing way: 

where 
K-+f?=G-KG+ 

G+=(exp(f+/2) 0 ) G-_(exp(-f-/2) -g- ). 
g+ exp(-f+/2) 0 exp(f-/2) 

The general representation for matrix K as the solution of equation (9) is 

K(C0. 5’)=5-(5-)5+(5+) 
where B,ESL(Z, C). Let functions f, be real functions and g+ arbitrary complex 
functions. In accordance with the Iwasawa decomposition for the group SL(2, C) we 
have 

G,B*ESU(~) 

for some matrix G+, and these matrices are unique. Consequently, condition (29) can 
be imposed. 

Let us consider the transformation group (27) for the real functionsf+ only. The 
orbits of this transformation group decompose the set of string configurations of the 
model into non-intersecting classes: We declare different points of. any orbit to be 
equivalent, so that in what follows we consider only the corresponding factor set. By 
virtue of this statement, within each orbit there exists a unique string configuration 
(X,,, Y+) such that the chiral field K( p, 5’) constructed from it is an SU(2)-valued 
field. This means that the current j.( 5)  parametrizing the phase space of the internal 
degrees of freedom of the string can be assumed to be real in what follows. The trans- 
formation (27) with the pure imaginary functionsf, from conformal invariance are 
also required. 

Note that the transformation (27) can be rewritten in terms of the original string 
variables (X,, , Y+). This procedure probably provides a key for the construction of the 
full invariant action in our model. 

5. Quantization 

Our model was reduced to the product of the theory of a free relativistic particle 
(described by the variables Pp, Ai’,””) and the theory of an SU(Z)-valued chiral field 
K( to, 5’). Non-triviality is conditioned by the constraints (15) and (22). In accordance 
with the Poisson brackets definition the resulting phase space is the product of the 
corresponding phase spaces. Thus we can use the method of Wightman (1964) which 
allows construction of ‘new’ quantum theories as derivatives of the ‘old’ ones. 

From an algebraic viewpoint, the basic structure of the Hamiltonian description of 
our model is the algebra A(”@P,  where P is the Poincark algebra and 
Ai”=(SL(2, C)O[t-’, f ] ) @ C z .  We emphasize that the Heizenberg-Weyl algebra W,, 
which is traditional in the classical theory, is not needed in our following investigation. 
As  see en, the object A{”@P is the most fundamental in the string theory. Thus, our 
classical studies lead to the following construction of the Hilbert space Hof the quantum 
states: 

H =  H&I HF (30) 
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where Hp is the space of representation of the Poincark algebra P, and HF is the corre- 
sponding space for the current algebra Ai') .  The representation of the current algebra 
will be constructed with the help of bosonization methods (Witten 1984). Let HF be 
the Fock space of the fermionic (antisymmetrical) 2n-periodical wavefunctions and 
ai,, 4p,," corresponding creation and annihilation operators: 

[a:. , upm]+ = 6,p6, a ,p= l ,2 ;n ,m=O,k l ,  .... 
The following pair of operator-valued functions are required by us: 

Let us define the quantum currents 

J " ( 5 ) =  c : w c ( 5 ) 0 " , p q ( 5 ) : .  
=J3 

It is known that the following commutators occur: 

[Jo( 5 ) ,  Jb(q)l= -2i6ob6'( 5 -  17) -2i%.6cr,( 5)6( 5 -  q )  (31) 
In accordance with the definitions of the classical current jo( 5 )  and functions 6, a, 

a+, pi, we have the following (nonlinear) functional dependence: 

jd 5)  =jet# ( t 1, ~ ( 5 1 ,  at( 0 pd5)I. 

jafi=ja[fi-'#, rr, a i ,  fi-lptl 

Let us introduce the notation 

where zi is the Planck constant. Note that we have the dependence 

j.( 5 )  =Fa(fi ;jA 5 )) 
which is trivial for the case f i=  1 only. Owing to one-to-one correspondence between 
the brackets (14) and (18) the brackets of the quantities j,r( 5 )  are 

2 2 
{ j.,fi( 5 ) , j d q ) }  = -; &b6'( 5 -  q)  -ti cabcjcfi( 5 V ( 5  - U). 

The quantization Y of the internal degrees of freedom of our string is the 
correspondence 

(32) 

j a d  5)  +Y(jOfi( 5 ) )  =JJ  5 ). 

[Y(j,fi( 5)), Y C i b h ( t ) ) ) l = i f i Y ( { j n * ( 5 ) . j b f i ( q ) }  ). 

(33) 
Obviously, formulae (20) and (21) lead to the equality 

Let us discuss the Hilbert space Ifp. The representations of the Poincarb algebra P have 
been thoroughly investigated (Barut and Raczca 1987), and we choose the following 
structure of this space: 
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The spaces H,,,J are the spaces of the irreducible representation of the Poincari algebra 
P which is marked by the eigenvalues pz and s(s+ 1) of the corresponding Casimir 
operators. For some basis I n)=  I pz, s; n)EH,,, we have ( m ;  I, vZ  I p', s; n )  = w- J)6,m69,. 

6. Physical subspace and the mass spectrum 

Because of the presence of the first-type constraints (15) and (22), we have to select 
the physical states I 4ph) by means of conditions 

< v p h l ( M - l ) I ' $ p h ) = O  (34) 

( y p h  I ( p ~ ~ ) 2 ~ ( s ( 0 ) ) 2 - s " ~ ~ ( M ( O ) ) 4  I 4 p h ) = O  (35) 

where operators M, ( S ~ o , ) 2 ~ S ~ o , p S ~ o ~ ,  ( M ( o J 2 =  P(a)pPfo) are the operator functionals 
of operators a,,n, aD,m only. t 

Let us investigate the physical vectors I Qph) in the form 

In this formula the vectors 1 cp,J are some basis in the space HF. Because of the equalities 

P,P"I pz, s; n)=p21 p2, s;  n )  S,S"lp, s; n)=s(s+ 1)1p, s; n )  

condition (35) is transformed into the condition 

A full consideration of condition (34) will be left for future publications but some 
previous discussion will be considered. In accordance with formulae (13) the to dynam- 
ics of the original string variableSA',, and Y, are realized through the matrices T( 5' +eo) 
and T( - 5' + 5'). Therefore we have the following (classical) equation: 

e2r{H,...T a I ( e  , 5  )=T(tO, t l ) M  
where exp[e{H,. . .] is the classical 'operator' of the evolution 
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After quantization we have the quantum operator e~p[ i5~H] .  This means that we can 
impose the following condition instead of condition (34): 

XI %>=ml4%c) (37) 
where m=m(n)=O, i l ,  . . . . 

Let us discuss the quantum Hamiltonian H. The following point must be taken into 
consideration. The introduction of quantum variables mi( 5) without a natural classical 
image leads to some ambiguity for the Hamiltonian. Indeed, various cases of eo 
dynamics 

mi(0, c')-m,{Zp, 5') e ~ ( ~ ' 1  

cannot be distinguishable in terms of the current J"( Eo, 5') for various real functions 
f( 5'). It is obvious for c-valued functionsf, but more complicated cases are possible. 
That is why the quantum Hamiltonian H can be different from the Hamiltonian (24) 
which was subjected to the quantization (33). We choose H in the form 

H= ~ ~ n l ( a f , a , , + a f , a ~ , ) .  
n 

A similar form is well known for Hamiltonians in models with bosonization (Green 
et al 1987). Obviously, the eigenvectors for the spectral problem (37) can be found 
explicitly. 

7. Concluding remarks 

As seen, the relativistic string is one of the simple models for a free particle with an 
infinite number of internal degrees of freedom. In this connection, the suggested 
approach is to generalize the Wigner description of a free elementary particle as some 
operator representation of the Poincark algebra P. The quantum string in our work is 
the representation of the object A{"@P. The non-triviality of the mass spectrum is the 
consequence of the 'kinematic' constraint (22). As seen, we have the Regge trajectories 
which are nonlinear but linear asymptotically: 

where 

The development of this idea probably requires some selection rules for vectors I q). 
The author hopes to return to this question in subsequent studies. 
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